

Mark Scheme (Results)

June 2011

GCE Further Pure FP1 (6667) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA027965 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 6667 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme	Notes	Marks
1.	$\mathbf{f}(x) = 3^x + 3x - 7$		
(a)	f(1) = -1 f(2) = 8	Either any one of $f(1) = -1$ or $f(2) = 8$.	M1
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) α is between $x = 1$ and $x = 2$.	Both values correct, sign change and conclusion	A1
			(2)
(b)	$f(1.5) = 2.696152423 \{ \Rightarrow 1,, \alpha,, 1.5 \}$	f(1.5) = awrt 2.7 (or truncated to 2.6)	B1
		Attempt to find $f(1.25)$.	M1
	f(1.25) = 0.698222038 $\Rightarrow 1,, \alpha, 1.25$	f(1.25) = awrt 0.7 with 1,, α ,, 1.25 or 1 < α < 1.25 or [1, 1.25] or (1, 1.25). or equivalent in words.	A1
	In (b) there is no credit for lin	ear interpolation and a	(3)
	correct answer with no worl	king scores no marks.	5

3

Question Number	Scheme	Notes	Mar	ks
2. (a)	$ z_1 = \sqrt{(-2)^2 + 1^2} = \sqrt{5} = 2.236$	$\sqrt{5}$ or awrt 2.24	B1	(1)
(b)				(1)
	$\arg z = \pi - \tan^{-1}(\frac{1}{2})$	$\tan^{-1}\left(\frac{1}{2}\right)$ or $\tan^{-1}\left(\frac{2}{1}\right)$ or $\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)$ or	M1	
		$\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$ or $\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)$ or $\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$		
		12(2)		
	= 2.07/943045 = 2.08 (2 dp)	$mark (arg z = 153 4349488^{\circ})$	Al oe	(2)
	$\arg z = \tan^{-1}(\frac{1}{2}) = -0.46$ or	on its own is M0		(2)
	but $\pi + \tan^{-1}(\frac{1}{2}) = 2.68 \text{ sc}$	ores M1A1		
	π -tan ⁻¹ $\left(\frac{1}{2}\right)$ = is M0 as is	$\pi - \tan(\frac{1}{2})$ (2.60)		
(c)	$z^2 - 10z + 28 = 0$			
	$z = \frac{10 \pm \sqrt{100 - 4(1)(28)}}{100 - 4(1)(28)}$	An attempt to use the quadratic formula	M1	
	2(1)	(usual rules)		
	$=\frac{10\pm\sqrt{100-112}}{2}$			
	2			
	$10 \pm \sqrt{-12}$			
	$=\frac{1}{2}$			
		Attempt to simplify their $\sqrt{-12}$ in terms		
	$=\frac{10\pm 2\sqrt{31}}{2}$	Attempt to simplify then $\sqrt{-12}$ in terms	M1	
	$\frac{2}{1}$ If their b ² -4ac >0 then only th	e first M1 is available		
	So, $z = 5 \pm \sqrt{3}i$. { $p = 5, q = 3$ }	$5 \pm \sqrt{3}i$	A1 oe	
	Correct answers with no work	king scores full marks.	-	(3)
(d)	See appendix for alternative solution	on by completing the square		
()	<i>y</i> •	Note that the points are $(-2, 1)$,		
	•	$(5, \sqrt{3})$ and $(5, -\sqrt{3})$.		
	•	The point $(-2, 1)$ plotted correctly on	R1	
	x	the Argand diagram with/without label.	DI	
		The distinct points z_2 and z_3 plotted		
		axis on the Argand diagram with/without	B1√	
	•	label.		
	The points must be correctly placed relative to	each other. If you are in doubt about		(2)
	awarding the marks then consult you	ir team leader or use review.		
	NB the second B mark in (d) depends on hav	ing obtained complex numbers in (c)		8

Question Number	Scheme	Notes	Ma	rks
3. (a)	$\mathbf{A} = \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix}$			
(i)	$\mathbf{A}^{2} = \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix}$			
	$ = \begin{pmatrix} 1+2 & \ddot{O} 2 - \ddot{O} 2 \\ \ddot{O} 2 - \ddot{O} 2 & 2+1 \end{pmatrix} $	A correct method to multiply out two matrices. Can be implied by two out of four correct elements.	M1	
	$= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	Correct answer	A1	
		<u> </u>		(2)
		Enlargement;	B1;	
(ii)	Enlargement ; scale factor 3, centre $(0, 0)$.	scale factor 3 , centre (0 , 0)	B1	
	Allow 'from' or 'about' for centre and '	D' or 'origin' for (0, 0)		
				(2)
(b)	$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$			
	Reflection; in the line $y = -x$.	$\frac{\text{Reflection};}{y = -x}$	B1; B1	
	Allow 'in the axis' 'about the lin	he' $y = -x$ etc.		
	The question does not specify a <u>single</u> transformation combinations that are correct e.g. Anticlockwise rotat	on so we would need to accept any ion of 90° about the origin followed		(2)
	by a reflection in the x-axis is acceptable. In cases like	ke these, the combination has to be		
	<u>completely</u> correct and scored as B2 (no part mark Leader.	s). If in doubt consult your Team		
(c)	$\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, \ k \text{ is a constant.}$			
	C is singular \Rightarrow det C = 0. (Can be implied)	$\det \mathbf{C} = 0$	B1	
	Special Case $\frac{1}{9(k+1)-12k} = 0$ B	l(implied)M0A0		
	9(k+1) - 12k (= 0)	Applies $9(k+1) - 12k$	M1	
	9k+9=12k			
	9 = 3k			
	<i>k</i> = 3	<i>k</i> = 3	A1	
	k = 3 with no working can score	e full marks		(3)
				0
L	5			<u>у</u>

Question Number	Scheme	Notes	Marks
4.	$f(x) = x^{2} + \frac{5}{2x} - 3x - 1, x \neq 0$		
(a)	$f(x) = x^{2} + \frac{5}{2}x^{-1} - 3x - 1$		
	$f'(x) = 2x - \frac{5}{2}x^{-2} - 3\{+0\}$	At least two of the four terms differentiated correctly. Correct differentiation. (Allow any correct unsimplified form)	M1 A1
	$\left\{ f'(x) = 2x - \frac{5}{2x^2} - 3 \right\}$		(2)
(b)	$f(0.8) = 0.8^{2} + \frac{5}{2(0.8)} - 3(0.8) - 1(=0.365) \left(=\frac{73}{200}\right)$	A correct numerical expression for f(0.8)	B1
	$f'(0.8) = -5.30625 \left(= \frac{-849}{160} \right)$	Attempt to insert $x = 0.8$ into their f ² (x). Does not require an evaluation. (If f'(0.8) is incorrect for their derivative and there is no working score M0)	M1
	$\alpha_2 = 0.8 - \left(\frac{"0.365"}{"-5.30625"}\right)$	Correct application of Newton-Raphson using their values. Does not require an evaluation.	M1
	= 0868786808		
	= 0.869 (3 dp)	0.869	A1 cao
	A correct answer only with no working sco Ignore any further appl	ores no marks. N-R must be seen. ications of N-R	(4)
	A derivative of $2x - 5(2x)^2 - 3$ is quite common	and leads to $f'(0.8) = -3.353125$ and a final	
	answer of 0.909. This would normally s	core M1A0B1M1M1A0 (4/6)	
	Similarly for a derivative of $2x - 10x^{-2} - 3$ where the corresponding values are		
	f'(0.8) = -17.025 and a	inswer 0.821	
			6

Question Number	Scheme	Notes	Marks
5.	$\mathbf{A} = \begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix}, \text{ where } a \text{ and } b \text{ are constants.}$		
(a)	$\mathbf{A} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$		
	Therefore, $\begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by both correct equations below.	M1
	Do not allow this mark for other incorrect statem e.g. $\binom{4}{6}\binom{-4}{b} = \binom{2}{-8}$ would be M0 unless following the mark for the mark	nents unless interpreted correctly later by correct equations or $\begin{pmatrix} -16+6a\\4b-12 \end{pmatrix} = \begin{pmatrix} 2\\-8 \end{pmatrix}$	
	So, $-16 + 6a = 2$ and $4b - 12 = -8$ Allow $\begin{pmatrix} -16 + 6a \\ 4b - 12 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$	Any one correct equation. Any correct horizontal line	M1
	giving $a = 3$ and $b = 1$.	Any one of $a = 3$ or $b = 1$. Both $a = 3$ and $b = 1$.	A1 A1
(b)	$\det \mathbf{A} = 8 - (3)(1) = 5$	Finds determinant by applying 8 – their <i>ab</i> . det A = 5	(4) M1
	Special case: The equations -16 + 6b = 2 and 4 from incorrect matrix multiplication. This will in (b).	a - 12 = -8 give $a = 1$ and $b = 3$. This comes Il score nothing in (a) but allow all the marks	
	Note that det $\mathbf{A} = \frac{1}{8-ab}$ scores M0 here but the between det $\mathbf{A} = \frac{1}{8-ab} = 1 \Rightarrow area S = \frac{30}{8-150} = 150$	ne following 2 marks are available. However,	
	beware det $A = \frac{1}{8-ab} = \frac{1}{5} \Rightarrow area = \frac{1}{15}$ This scores M0A0 M1A0		
	Area $S = (\det \mathbf{A})(\operatorname{Area} R)$		
	Area $S = 5 \times 30 = 150 \text{ (units)}^2$	$\frac{30}{\text{their det } \mathbf{A}} \text{ or } 30 \times (\text{their det } \mathbf{A})$	M1
	If their det $A < 0$ then allow	150 or ft answer ft provided final answer > 0	A1 (4)
	In (b) Candidates may take a more laborious rot the unit square, for example, after the transfor complete method to score any marks. Correctly answer 5 A1. Then mark as original scheme.	the for the area scale factor and find the area of rmation represented by A. This needs to be a restablishing the area scale factor M1. Correct	8

Scheme	Notes	Marks
$z + 3iz^* = -1 + 13i$		
(x+iy)+3i(x-iy)	$\frac{z^* = x - i y}{\text{Substituting } z = x + i y \text{ and their } z^*}$ into $z + 3i z^*$	B1 M1
x + i y + 3i x + 3 y = -1 + 13i	Correct equation in x and y with $i^2 = -1$. Can be implied.	A1
(x + 3y) + i(y + 3x) = -1 + 13i		
Re part: $x + 3y = -1$	An attempt to equate real and imaginary parts.	M1
Im part : $y + 3x = 13$	Correct equations.	A1
3x + 9y = -3 $3x + y = 13$		
$8y = -16 \implies y = -2$	Attempt to solve simultaneous equations to find one of x or y. At least one of the equations must contain both x and y terms.	M1
$x + 3y = -1 \implies x - 6 = -1 \implies x = 5$	Both $x = 5$ and $y = -2$.	A1
$\left\{ z = 5 - 2i \right\}$	1	(7)
	Scheme $z + 3iz^* = -1 + 13i$ $(x + iy) + 3i(x - iy)$ $x + iy + 3ix + 3y = -1 + 13i$ $(x + 3y) + i(y + 3x) = -1 + 13i$ Re part: $x + 3y = -1$ Im part: $y + 3x = 13$ $3x + 9y = -3$ $3x + y = 13$ $8y = -16 \Rightarrow y = -2$ $x + 3y = -1 \Rightarrow x - 6 = -1 \Rightarrow x = 5$ $\{z = 5 - 2i\}$	SchemeNotes $z + 3iz^* = -1 + 13i$ $z^* = x - iy$ $(x + iy) + 3i(x - iy)$ Substituting $z = x + iy$ and their z^* into $z + 3iz^*$ $x + iy + 3ix + 3y = -1 + 13i$ Correct equation in x and y with $i^2 = -1$. Can be implied. $(x + 3y) + i(y + 3x) = -1 + 13i$ An attempt to equate real and imaginary parts. Correct equations.Re part: $x + 3y = -1$ $3x + 9y = -3$ $3x + y = 13$ $3x + 9y = -3$ $3x + y = 13$ Attempt to solve simultaneous equations to find one of x or y. At least one of the equations must contain both x and y terms. $x + 3y = -1 \Rightarrow x - 6 = -1 \Rightarrow x = 5$ Both $x = 5$ and $y = -2$. $\{z = 5 - 2i\}$ $\{z = 5 - 2i\}$

Question Number	Scheme	Notes	Marks
7.	$\{\mathbf{S}_n =\} \sum_{r=1}^n (2r-1)^2$		
(a)	$= \sum_{r=1}^{n} 4r^2 - 4r + 1$	Multiplying out brackets and an attempt to use at least one of the two standard formulae correctly.	M1
	$= 4 \cdot \frac{1}{6} n(n+1)(2n+1) - 4 \cdot \frac{1}{2} n(n+1) + n$	$\frac{\text{First two terms correct.}}{+ n}$	A1 B1
	$= \frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$		
		Attempt to factorise out $\frac{1}{3}n$	M1
	$= \frac{1}{3}n\{2(n+1)(2n+1) - 6(n+1) + 3\}$	Correct expression with $\frac{1}{3}n$ factorised out with no errors seen.	A1
	$= \frac{1}{3}n\left\{2(2n^2+3n+1) - 6(n+1) + 3\right\}$		
	$= \frac{1}{3}n\left\{4n^2 + 6n + 2 - 6n - 6 + 3\right\}$		
	$= \frac{1}{3}n\left(4n^2 - 1\right)$		
	$= \frac{1}{3}n(2n+1)(2n-1)$	Correct proof. No errors seen.	A1 *
	Note that there are no marks	for proof by induction.	(6)
(b)	$\sum_{r=n+1}^{3n} (2r-1)^2 = S_{3n} - S_n$		
	1 1	Use of $S_{3n} - S_n$ or $S_{3n} - S_{n+1}$ with the	M1
	$= \frac{1}{3} \cdot 3n(6n+1)(6n-1) - \frac{1}{3}n(2n+1)(2n-1)$	Correct unsimplified expression.	Al
	Note that (b) says hence so they hav	e to be using the result from (a) $(3n)$	
	$= n(36n^2 - 1) - \frac{1}{3}n(4n^2 - 1)$		
	$= \frac{1}{3}n(108n^2 - 3 - 4n^2 + 1)$	Factorising out $\frac{1}{3}n$ (or $\frac{2}{3}n$)	dM1
	$= \frac{1}{3}n(104n^2 - 2)$		
	$=\frac{2}{3}n(52n^2-1)$	$\frac{2}{3}n(52n^2-1)$	A1
	$\{a = 52, b = -1\}$		(4)
			10

Question Number	Scheme	Notes	Marks	
8.	$C: y^2 = 48x$ with general point $P(12t^2, 24t)$.			
(a)	$y^2 = 4ax \implies a = \frac{48}{4} = 12$	Using $y^2 = 4ax$ to find <i>a</i> .	M1	
	So, directrix has the equation $x + 12 = 0$	x + 12 = 0	A1 oe	
	Correct answer with no worki	ng allow full marks	(2)
(b)	$y = \sqrt{48} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \frac{1}{2} \sqrt{48} x^{-\frac{1}{2}} \left(= 2\sqrt{3} x^{-\frac{1}{2}} \right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k \; x^{-\frac{1}{2}}$		
	or (implicitly) $y^2 = 48x \Longrightarrow 2y \frac{dy}{dx} = 48$	$ky\frac{\mathrm{d}y}{\mathrm{d}x} = c$	M1	
	or (chain rule) $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 24 \times \frac{1}{24t}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their}\frac{dx}{dt}}\right)$		
	When $x = 12t^2$, $\frac{dy}{dx} = \frac{\sqrt{48}}{2\sqrt{12t^2}} = \frac{\sqrt{4}}{2t} = \frac{1}{t}$ or $\frac{dy}{dx} = \frac{48}{2y} = \frac{48}{48t} = \frac{1}{t}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{t}$	A1	
	T : $y - 24t = \frac{1}{t} (x - 12t^2)$	Applies $y - 24t = \text{their } m_T (x - 12t^2)$ or $y = (\text{their } m_T)x + c$ using $x = 12t^2$ and $y = 24t$ in an attempt to find c. Their m_T must be a function of t .	M1	
	T : $ty - 24t^2 = x - 12t^2$			
	$\mathbf{T}: \ x - ty + 12t^2 = 0$	Correct solution.	A1 cso *)
(c)	Special case: If the gradient is <u>quoted</u> as Compare $P(12t^2, 24t)$ with (3 12) gives $t = \frac{1}{2}$	$t = \frac{1}{2}$	(4 B1)
	NB $x - ty + 12t^2 = 0$ with $x = 3$ and $y = 12$ gives 4.	$t^{2} - 4t + 1 = 0 = (2t - 1)^{2} \Longrightarrow t = \frac{1}{2}$	DI	
	$t = \frac{1}{2}$ into T gives $x - \frac{1}{2}y + 3 = 0$	Substitutes their t into T .	M1	
	See Appendix for an alternative app	proach to find the tangent		
	At X, $x = -12 \implies -12 - \frac{1}{2}y + 3 = 0$	Substitutes their x from (a) into T .	M1	
	So, $-9 = \frac{1}{2}y \implies y = -18$			
	So the coordinates of <i>X</i> are $(-12, -18)$.	(-12, -18)	A1	
	The coordinates must be together at the end for the	final A1 e.g. as above or $x = -12$, $y = -18$	(4)
			1	0

Question Number	Scheme	Notes	Marks
9. (a)	$n = 1; \text{LHS} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^1 = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$ $\text{RHS} = \begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$ $\text{As LHS} = \text{RHS}, \text{ the matrix result is true for } n = 1.$ $\text{Assume that the matrix equation is true for } n = k,$ $\text{ie.} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$	Check to see that the result is true for $n = 1$.	B1
	With $n = k + 1$ the matrix equation becomes $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$ $= \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \operatorname{or} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$ $\begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \end{pmatrix}_{ar} \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \end{pmatrix}$	$\begin{pmatrix} 3^{k} & 0\\ 3(3^{k} - 1) & 1 \end{pmatrix}$ by $\begin{pmatrix} 3 & 0\\ 6 & 1 \end{pmatrix}$ Correct unsimplified matrix with	M1
	$= \begin{pmatrix} 9(3^{k} - 1) + 6 & 0 + 1 \end{pmatrix}^{OI} \begin{pmatrix} 6.3^{k} + 3(3^{k} - 1) & 0 + 1 \end{pmatrix}$ $= \begin{pmatrix} 3^{k+1} & 0 \\ 9(3^{k}) - 3 & 1 \end{pmatrix}$ $= \begin{pmatrix} 3^{k+1} & 0 \\ 3(3(3^{k}) - 1) & 1 \end{pmatrix}$	no errors seen.	
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3^{k+1} - 1) & 1 \end{pmatrix}$ If the result is true for $n = k$, (1) then it is now true for $n = k+1$. (2) As the result has shown to be true for $n = 1$, (3) then the result is true for all n . (4) All 4 aspects need to be mentioned at some point for the last A1.	Manipulates so that $k \rightarrow k+1$ on at least one term. Correct result with no errors seen with some working between this and the previous A1 Correct conclusion with all previous marks earned	dM1 A1 A1 cso
			(6)

Question Number	Scheme	Notes	Marks
9. (b)	f (1) = $7^{2-1} + 5 = 7 + 5 = 12$, {which is divisible by 12}. {∴ f (n) is divisible by 12 when n = 1.}	Shows that $f(1) = 12$.	B1
	Assume that for $n = k$, $f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in e^+$.		
	So, $f(k + 1) = 7^{2(k+1)-1} + 5$	Correct unsimplified expression for $f(k + 1)$.	B1
	giving, $f(k + 1) = 7^{2k+1} + 5$		
	$\therefore f(k+1) - f(k) = (7^{2k+1} + 5) - (7^{2k-1} + 5)$	Applies $f(k+1) - f(k)$. No simplification is necessary and condone missing brackets.	M1
	$= 7^{2k+1} - 7^{2k-1}$		
	$= 7^{2k-1} \left(7^2 - 1 \right)$	Attempting to isolate 7^{2k-1}	M1
	$=48(7^{2k-1})$	$48(7^{2k-1})$	Alcso
	:. $f(k+1) = f(k) + 48(7^{2k-1})$, which is divisible by 12 as both $f(k)$ and $48(7^{2k-1})$ are both divisible by 12.(1) If the result is true for $n = k$, (2) then it is now true for $n = k+1$. (3) As the result has shown to be true for $n = 1,(4)$ then the result is true for all n . (5). All 5 aspects need to be mentioned at some point for the last A1.	Correct conclusion with no incorrect work. Don't condone missing brackets.	A1 cso
	There are other ways of proving this by induction. S If you are in any doubt consult your team leader a	See appendix for 3 alternatives. and/or use the review system.	(6)
			12

Appendix

Question Number	Scheme	Notes	Marks
Aliter			
2. (c)	$z^2 - 10z + 28 = 0$		
Way 2			
	$(z-5)^2 - 25 + 28 = 0$	$(z\pm 5)^2\pm 25+28=0$	M1
	$\left(z-5\right)^2 = -3$		
	$z - 5 = \sqrt{-3}$		
	$z - 5 = \sqrt{3}i$	Attempt to express their $\sqrt{-3}$	M1
		in terms of i.	
	So, $z = 5 \pm \sqrt{3}i$. { $p = 5, q = 3$ }	$5 \pm \sqrt{3}$ i	A1 oe
			(3)

Question Number	Scheme		Mai	ks
Aliter	2 10 28 . 0			
2. (c) Way 3	z - 10z + 28 = 0			
	$\left(z - \left(p + i\sqrt{q}\right)\right)\left(z - \left(p - i\sqrt{q}\right)\right) = z^2 - 2pz + p^2 + q$			
	$2 + 10 + \frac{2}{2} + 20$	Uses sum and product of roots	2.01	
	$2p = \pm 10$ and $p^2 \pm q = 28$	Uses sum and product of foots	MI	
	$2p = \pm 10 \implies p = 5$	Attempt to solve for $p(\text{or } q)$	M1	
	p=5 and $q=3$		A1	
				(3)

Question Number	Scheme	Notes	Ma	rks
Aliter				
8. (c)	$\frac{dy}{dx} = 2\sqrt{3} x^{-\frac{1}{2}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$		B1	
Way 2			_	
	Gives $y - 12 = 2(x - 3)$	Uses (3, 12) and their "2" to find the equation of the tangent.	M1	
			_	
	$x = -12 \Longrightarrow y - 12 = 2(-12 - 3)$	tangent	M1	
	y = -18			
	So the coordinates of <i>X</i> are $(-12, -18)$.		A1	
				(4)

Question Number	Scheme	Notes	Marks
Alitor			
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12$.	Shows that $f(1) = 12$.	B1
Way 2	{which is divisible by 12}. { \therefore f (n) is divisible by 12 when $n = 1$.}		
	Assume that for $n = k$,		
	$f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in \mathfrak{E}^+$.		
	So, $f(k + 1) = 7^{2(k+1)-1} + 5$	Correct expression for $f(k + 1)$.	B1
	giving, $f(k+1) = 7^{2k+1} + 5$		
	$7^{2k+1} + 5 = 49 \times 7^{2k-1} + 5$	Attempt to isolate 7^{2k-1}	M1
	$=49 \times (7^{2k-1} + 5) - 240$	M1 Attempt to isolate $7^{2k-1} + 5$	M1
	$f(k+1) = 49 \times f(k) - 240$	Correct expression in terms of $f(k)$	A1
	As both $f(k)$ and 240 are divisible by 12 then so is $f(k + 1)$. If the result is true for $n = k$, then it		
	is now true for $n = k+1$. As the result has	Correct conclusion	A1
	shown to be true for $n = 1$, then the result is true		
	for all <i>n</i> .		
			(6)

Question	Scheme	Notes	Marks
INUITIOCI			
Aliter			_
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 3	{which is divisible by 12}.		
	$\{ :: f(n) \text{ is divisible by } 12 \text{ when } n = 1. \}$		
		- -	
	Assume that for $n = k$, $f(k)$ is divisible by 12		
	$so f(k) = 7^{2k-1} + 5 = 12m$		
			_
	So, $f(k + 1) = 7^{2(k+1)-1} + 5$	Correct expression for $f(k + 1)$.	B1
	giving, $f(k + 1) = 7^{2k+1} + 5$		
	$7^{2k+1} + 5 = 7^2 \cdot 7^{2k-1} + 5 = 49 \times 7^{2k-1} + 5$	Attempt to isolate 7^{2k-1}	M1
	$=49\times(12m-5)+5$	Substitute for <i>m</i>	M1
	$f(k+1) = 49 \times 12m - 240$	Correct expression in terms of <i>m</i>	Al
	As both $49 \times 12m$ and 240 are divisible by 12		
	then so is $f(k + 1)$. If the result is true for $n = k$,		
	then it is now true for $n = k+1$. As the result	Correct conclusion	A1
	has shown to be true for $n = 1$, then the result is		
	true for all <i>n</i> .		
			(6)

15

Question Number	Scheme	Notes	Marks
Aliter			
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 4	{which is divisible by 12}.		
	$\{: f(n) \text{ is divisible by } 12 \text{ when } n = 1.\}$		
	A groups that for a - L		
	Assume that for $n = k$,		
	$f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in \mathcal{C}^+$.		
	$f(k + 1) + 35f(k) = 7^{2(k+1)-1} + 5 + 35(7^{2k-1} + 5)$	Correct expression for $f(k + 1)$	D 1
	$\frac{1}{(k+1)+551(k)-\frac{1}{(k+1)+551(k)-\frac{1}{(k+1)+550(k+1)+50($	Add appropriate multiple of $f(k)$	DI
	$f(k+1) + 35f(k) = 7^{2k+1} + 5 + 35(7^{2k-1} + 5)$	For 7^{2k} this is likely to be 35 (119, 203,.) For 7^{2k-1} 11 (23, 35, 47,)	M1
	giving, $7.7^{2k} + 5 + 5.7^{2k} + 175$	Attempt to isolate 7^{2k}	M1
	$= 180 + 12 \times 7^{2k} = 12(15 + 7^{2k})$	Correct expression	A1
	\therefore f(k+1) = 12(7 ^{2k} +15) - 35f(k). As both f(k)		
	and $12(7^{2k} + 15)$ are divisible by 12 then so is		
	f(k + 1). If the result is true for $n = k$, then it is	Correct conclusion	A1
	now true for $n = k+1$. As the result has shown		
	to be true for $n = 1$, then the result is true for all		
	<i>n</i> .		
			(6)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA027965 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

