Mark Scheme (Results)

June 2011

GCE Further Pure FP1 (6667) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027965
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

June 2011
6667 Further Pure Mathematics FP1
Mark Scheme

Question Number	Scheme	Notes	Marks
1.	$\mathrm{f}(x)=3^{x}+3 x-7$		
(a)	$\begin{aligned} & f(1)=-1 \\ & f(2)=8 \end{aligned}$	Either any one of $f(1)=-1$ or $f(2)=8$.	M1
	Sign change (positive, negative) (and $\mathrm{f}(x)$ is continuous) therefore (a root) α is between $x=1$ and $x=2$.	Both values correct, sign change and conclusion	A1
			(2)
(b)	$\mathrm{f}(1.5)=2.696152423 \ldots \quad\left\{\Rightarrow 1, \alpha_{\text {, }} 1.5\right\}$	$\mathrm{f}(1.5)=$ awrt 2.7 (or truncated to 2.6)	B1
		Attempt to find $\mathrm{f}(1.25)$.	M1
	$\mathrm{f}(1.25)=0.698222038 \ldots$	$\begin{aligned} & \mathrm{f}(1.25)=\text { awrt } 0.7 \text { with } \\ & 1, \alpha_{,} 1.25 \text { or } 1<\alpha<1.25 \\ & \text { or }[1,1.25] \text { or }(1,1.25) . \end{aligned}$ or equivalent in words.	A1
	In (b) there is no credit for linear interpolation and a correct answer with no working scores no marks.		(3)
			5

edexcel

Question Number	Scheme	Notes	Marks
4.	$\mathrm{f}(x)=x^{2}+\frac{5}{2 x}-3 x-1, \quad x \neq 0$		
(a)	$\mathrm{f}(x)=x^{2}+\frac{5}{2} x^{-1}-3 x-1$		
	$\mathrm{f}^{\prime}(x)=2 x-\frac{5}{2} x^{-2}-3\{+0\}$	At least two of the four terms differentiated correctly.	M1
		Correct differentiation. (Allow any correct unsimplified form)	A1
	$\left\{\mathrm{f}^{\prime}(x)=2 x-\frac{5}{2 x^{2}}-3\right\}$		(2)
(b)	$\mathrm{f}(0.8)=0.8^{2}+\frac{5}{2(0.8)}-3(0.8)-1(=0.365)\left(=\frac{73}{200}\right)$	A correct numerical expression for $f(0.8)$	B1
	$\mathrm{f}^{\prime}(0.8)=-5.30625\left(=\frac{-849}{160}\right)$	Attempt to insert $x=0.8$ into their $\mathrm{f}^{\prime}(x)$. Does not require an evaluation. (If $f^{\prime}(0.8)$ is incorrect for their derivative and there is no working score M0)	M1
	$\alpha_{2}=0.8-\left(\frac{" 0.365 "}{"-5.30625 "}\right)$	Correct application of Newton-Raphson using their values. Does not require an evaluation.	M1
	$=0868786808 .$.		
	$=0.869$ (3 dp)	0.869	A1 cao
	A correct answer only with no working scores no marks. \mathbf{N}-R must be seen. Ignore any further applications of $\mathrm{N}-\mathrm{R}$		(4)
	A derivative of $2 x-5(2 x)^{-2}-3$ is quite common and leads to $f^{\prime}(0.8)=-3.353125$ and a final answer of 0.909 . This would normally score M1A0B1M1M1A0 (4/6) Similarly for a derivative of $2 x-10 x^{-2}-3$ where the corresponding values are $f^{\prime}(0.8)=-17.025$ and answer 0.821		
			6

edexcel

Question Number	Scheme Notes		Marks
6.	$z+3 \mathrm{i} z^{*}=-1+13 \mathrm{i}$		B1M1
	$(x+\mathrm{i} y)+3 \mathrm{i}(x-\mathrm{i} y)$	$z^{*}=x-\mathrm{i} y$	
		Substituting $z=x+\mathrm{i} y$ and their z^{*} into $z+3 i z^{*}$	
	$x+\mathrm{i} y+3 \mathrm{i} x+3 y=-1+13 \mathrm{i}$	Correct equation in x and y with $\mathrm{i}^{2}=-1$. Can be implied.	A1
	$(x+3 y)+\mathrm{i}(y+3 x)=-1+13 \mathrm{i}$		
	Re part: $\quad x+3 y=-1$ Im part: $y+3 x=13$	An attempt to equate real and imaginary parts.	M1
		Correct equations.	A1
	$\begin{aligned} & 3 x+9 y=-3 \\ & 3 x+y=13 \end{aligned}$		
	$8 y=-16 \Rightarrow y=-2$	Attempt to solve simultaneous equations to find one of x or y. At least one of the equations must contain both x and y terms.	M1
	$x+3 y=-1 \Rightarrow x-6=-1 \Rightarrow x=5$	Both $x=5$ and $y=-2$.	A1
	$\{z=5-2 \mathrm{i}\}$		
			7

Question Number	Scheme	Notes	Marks
8.	$C: y^{2}=48 x$ with general point $P\left(12 t^{2}, 24 t\right)$.		M1
(a)	$y^{2}=4 a x \Rightarrow a=\frac{48}{4}=12 \times$ Using $y^{2}=4 a x$ to find a.		
	So, directrix has the equation $x+12=0$	$x+12=0$	A1 oe (2)
	Correct answer with no working allow full marks		
(b)	$y=\sqrt{48} x^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \sqrt{48} x^{-\frac{1}{2}}\left(=2 \sqrt{3} x^{-\frac{1}{2}}\right)$ $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm k x^{-\frac{1}{2}}$ or (implicitly) $y^{2}=48 x \Rightarrow 2 y \frac{d y}{d x}=48$ $k y \frac{\mathrm{~d} y}{\mathrm{~d} x}=c$ or (chain rule) $\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=24 \times \frac{1}{24 t}$ their $\frac{d y}{d t} \times\left(\frac{1}{\text { their } \frac{d x}{d t}}\right)$		M1
	When $x=12 t^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\sqrt{48}}{2 \sqrt{12 t^{2}}}=\frac{\sqrt{4}}{2 t}=\frac{1}{t}$ or $\frac{d y}{d x}=\frac{48}{2 y}=\frac{48}{48 t}=\frac{1}{t}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{t}$	A1
	T: $y-24 t=\frac{1}{t}\left(x-12 t^{2}\right)$	Applies $y-24 t=$ their $m_{T}\left(x-12 t^{2}\right)$ or $y=\left(\right.$ their $\left.m_{T}\right) x+c$ using $x=12 t^{2}$ and $y=24 t$ in an attempt to find c . Their \boldsymbol{m}_{T} must be a function of \boldsymbol{t}.	M1
	T: $t y-24 t^{2}=x-12 t^{2}$		
	T: $x-t y+12 t^{2}=0$	Correct solution.	A1 cso *
	Special case: If the gradient is quoted as $1 /$, this can score M0A0M1A1		
(c)	Compare $P\left(12 t^{2}, 24 t\right)$ with (3,12) gives $t=\frac{1}{2}$.	$t=\frac{1}{2}$	B1
	NB $x-t y+12 t^{2}=0$ with $x=3$ and $y=12$ gives $4 t^{2}-4 t+1=0=(2 t-1)^{2} \Rightarrow t=\frac{1}{2}$		
	$t=\frac{1}{2}$ into T gives $x-\frac{1}{2} y+3=0$	Substitutes their t into T.	M1
	See Appendix for an alternative approach to find the tangent		
	At $X, x=-12 \Rightarrow-12-\frac{1}{2} y+3=0$	Substitutes their x from (a) into T.	M1
	So, $-9=\frac{1}{2} y \Rightarrow y=-18$		
	So the coordinates of X are ($-12,-18$).	$(-12,-18)$	A1
	The coordinates must be together at the end for the final A1 e.g. as above or $\boldsymbol{x}=\mathbf{- 1 2 , y = - 1 8}$		(4)
			10

Appendix

Question Number	Scheme		Marks
Aliter 2. (c) Way 3			M1 M1 A1
	$z^{2}-10 z+28=0$		
	$(z-(p+i \sqrt{q}))(z-(p-i \sqrt{q}))=z^{2}-2 p z+p^{2}+q$		
	$2 p= \pm 10$ and $p^{2} \pm q=28$ Uses sum and product of roots		
	$2 p= \pm 10 \Rightarrow p=5$	Attempt to solve for p (or q)	
	$p=5$ and $q=3$		
			(3)

Question Number	Scheme	Notes	Marks
Aliter 8. (c) Way 2			B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{3} x^{-\frac{1}{2}}=\frac{2 \sqrt{3}}{\sqrt{3}}=2$		
	Gives $y-12=2(x-3)$	Uses $(3,12)$ and their " 2 " to find the equation of the tangent.	M1
	$x=-12 \Rightarrow y-12=2(-12-3)$	Substitutes their x from (a) into their tangent	M1
	$y=-18$		A1
	So the coordinates of X are ($-12,-18$).		
			(4)

Question Number	Scheme	Notes	Marks
Aliter 9. (b) Way 2			B1
	$\mathrm{f}(1)=7^{2-1}+5=7+5=12$,	Shows that $\mathrm{f}(1)=12$.	
	$\{$ which is divisible by 12$\}$. $\{\therefore \mathrm{f}(n)$ is divisible by 12 when $n=1$.		
	Assume that for $n=k$,		
	$\mathrm{f}(k)=7^{2 k-1}+5$ is divisible by 12 for $k \in ¢^{+}$.		
	So, $\mathrm{f}(k+1)=7^{2(k+1)-1}+5$	Correct expression for $\mathrm{f}(k+1)$.	B1
	giving, $\mathrm{f}(k+1)=7^{2 k+1}+5$		M1
	$7^{2 k+1}+5=49 \times 7^{2 k-1}+5$	Attempt to isolate $7^{2 k-1}$	
	$=49 \times\left(7^{2 k-1}+5\right)-240$	M1 Attempt to isolate $7^{2 k-1}+5$	M1
	$\mathrm{f}(k+1)=49 \times \mathrm{f}(k)-240$	Correct expression in terms of $\mathrm{f}(k)$	A1
	As both $\mathrm{f}(k)$ and 240 are divisible by 12 then so is $\mathrm{f}(k+1)$. If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion	A1
	(6)		

Question Number	Scheme	Notes	Marks
Aliter 9. (b) Way 3			B1
	$\mathrm{f}(1)=7^{2-1}+5=7+5=12$,	Shows that $\mathrm{f}(1)=12$.	
	$\{$ which is divisible by 12$\}$. $\{\therefore \mathrm{f}(n)$ is divisible by 12 when $n=1$. \}		
	Assume that for $n=k, \mathrm{f}(\mathrm{k})$ is divisible by 12		
	sof $(k)=7^{2 k-1}+5=12 m$		
	So, $\mathrm{f}(k+1)=7^{2(k+1)-1}+5$	Correct expression for $\mathrm{f}(k+1)$.	B1
	giving, $\mathrm{f}(k+1)=7^{2 k+1}+5$		
	$7^{2 k+1}+5=7^{2} .7^{2 k-1}+5=49 \times 7^{2 k-1}+5$	Attempt to isolate $7^{2 k-1}$	M1
	$=49 \times(12 m-5)+5$	Substitute for m	
	$\mathrm{f}(k+1)=49 \times 12 m-240$	Correct expression in terms of m	A1
	As both $49 \times 12 m$ and 240 are divisible by 12 then so is $\mathrm{f}(k+1)$. If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion	A1
			(6)

Question Number	Scheme	Notes	Marks
Aliter 9. (b) Way 4			B1
	$\mathrm{f}(1)=7^{2-1}+5=7+5=12$,	Shows that $\mathrm{f}(1)=12$.	
	\{which is divisible by 12 \}. $\{\therefore \mathrm{f}(n)$ is divisible by 12 when $n=1$.		
	Assume that for $n=k$, $\mathrm{f}(k)=7^{2 k-1}+5$ is divisible by 12 for $k \in 申^{+}$.		
	$\mathrm{f}(k+1)+35 \mathrm{f}(k)=\underline{7^{2(k+1)-1}+5+35\left(7^{2 k-1}+5\right)}$	Correct expression for $\mathrm{f}(k+1)$.	B1
	$\mathrm{f}(k+1)+35 \mathrm{f}(k)=7^{2 k+1}+5+35\left(7^{2 k-1}+5\right)$	Add appropriate multiple of $\mathrm{f}(k)$ For $7^{2 k}$ this is likely to be $35(119,203,$. For $7^{2 k-1} 11(23,35,47, .$.	M1
	giving, $7.7^{2 k}+5+5.7^{2 k}+175$	Attempt to isolate $7^{2 k}$	M1
	$=180+12 \times 7^{2 k}=12\left(15+7^{2 k}\right)$	Correct expression	A1
	$\therefore \mathrm{f}(k+1)=12\left(7^{2 k}+15\right)-35 \mathrm{f}(k)$. As both $\mathrm{f}(k)$ and $12\left(7^{2 k}+15\right)$ are divisible by 12 then so is		A1
	$\mathrm{f}(k+1)$. If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion	
			(6)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027965 June 2011

For more information on Edexcel qualifications, please visit ww.edexcel.com/quals

Llywodraeth Cynulliad Cymru Welsh Assembly Government

